Blackett Family DNA Activity 2Genetics of STR InheritanceSince there are no phenotypes associated with the CODIS STR loci, understanding the genetics of STR inheritance is simplified compared to other genetic problems. We need only consider the genotypes of the parents and their offspring. The alleles of different STR loci are inherited like any other Mendelian genetic markers. Diploid parents each pass on one of their two alleles to their offspring according. Here is brief review of the genetic concepts and terms important for understanding STR allele inheritance. For an in depth tutorial, visit our Monohybrid Cross problem set.
Here are some examples of the how STR data can be interpreted in a family DNA study. The numbers outside the Punnett Squares are the parental alles that can be present in the egg or sperm of the parents. The numbers inside the squares are the genotypes possible for the resulting children. Case 1If the genotypes of both parents are known, we use a Punnett Square to predict the possible phenotypes of their offspring. Each child inherits one allele of a given locus from each parent. Panel (a) - At the D21S11 locus, the children of Bob Blackett and wife Anne can have four different genotypes. Son David is 28, 31. Daughter Katie is 29, 30. Panel (b) - Bob Blackett inherited the 31 allele from his mother, Norma. Therefore the 29 allele is paternal. If Bob's paternal was not 29, what would be your conclusion? Case 2In the genotypes of a mother and several children are known, it is often possible to unambiguously predict the genotype of the father. In this case, Karen is the mother with a genotype of 9, 9.3 at the THO1 locus. From the Punnett Square we can determine that the paternal alleles of Tiffany, Melissa, and Amanda are 8, 9.3, and 9.3, respectively. Therefore, their father Steve must have a genotype of 8, 9.3. If the three daughters had three different paternal alleles, what would be your conclusion? Case 3Sometimes only one allele of the father can be predicted when the genotypes of a mother and several children are know. In this example, the genotype of Karen, the mother, is 16, 17 at the D18S51 locus. The genotypes of the daughters are either 16, 18 or 17, 18. In each case, Melissa, Tiffany, and Amanda inherited the 18 allele from their father, Steve. We cannot determine if the genotype of Steve is homozygous, 18, 18 or 18, ? where the ? means any other allele. Case 4Is it possible to determine parental genotypes when only the genotypes of their children are known? Consider the case of Bob Blackett's 4 first coursins, Marilyn, Buddy, Dick and Janet. Bob did not have DNA samples for their parents, Bud and Louise, who are both deceased. In a real forensic case, Bud and Louise might represent "missing persons". In panel (a) we can arrange the 3 known genotypes of the 4 children. In panel (b) we predict the only two paternal genotypes for the parents that can account for the children. Note that we cannot determine which genotype goes with which parent. Case 5A variation on Case 4 is when there are only two genotypes known for the children, and both parental genotypes must be predicted. Panel (a) - Marilyn and Janet are 15, 16 at the locus D3S1358. Buddy and Dick are 18, 18. Panel (b) - The only parental genotypes that can give this result are 15, 18 and 16, 18. Once again, we cannot predict which parent as which genotype. Case 6Sometimes the parental genotypes cannot be predicted unambigously from the genotypes of their children. Marilyn is 16, 17 at the locus vWA. Buddy, Dick, and Janet are 16, 18. What are the parental genotypes? Panel (a) - One interpretations is that the parents are 16, 18 and 16, 17. Panel (b) - Another possibility is that one parent is 17, 18 and the other is 16, ?, where ? is any allele.
Introduction: Overview | STR P | CODIS | Analysis | Inheritance | Frequency Calc.
Activities : Pedigree | Collect data | Paternity testing | Missing person | RCMP freq. calc.
University of Arizona October 27, 2000 hallick@email.arizona.edu http://biology.arizona.edu All contents copyright © 1996-2000. All rights reserved. Credits |